Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → ACTIVATE(L)
NATSZEROS
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
NATSADX(zeros)
ACTIVATE(n__adx(X)) → ADX(X)
TAIL(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → ACTIVATE(L)
NATSZEROS
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
NATSADX(zeros)
ACTIVATE(n__adx(X)) → ADX(X)
TAIL(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ADX(cons(X, L)) → ACTIVATE(L)
The remaining pairs can at least be oriented weakly.

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)
Used ordering: Polynomial interpretation [25,35]:

POL(n__incr(x1)) = (1/4)x_1   
POL(ADX(x1)) = 4 + (1/2)x_1   
POL(n__adx(x1)) = 4 + x_1   
POL(n__zeros) = 0   
POL(activate(x1)) = x_1   
POL(0) = 0   
POL(cons(x1, x2)) = (4)x_2   
POL(adx(x1)) = 4 + x_1   
POL(incr(x1)) = (1/4)x_1   
POL(zeros) = 0   
POL(s(x1)) = 0   
POL(nil) = 0   
POL(INCR(x1)) = (1/4)x_1   
POL(ACTIVATE(x1)) = x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

adx(X) → n__adx(X)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
zerosn__zeros
activate(n__zeros) → zeros
activate(n__adx(X)) → adx(X)
activate(X) → X
incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__incr(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)
Used ordering: Polynomial interpretation [25,35]:

POL(n__incr(x1)) = 1/4 + (1/2)x_1   
POL(ADX(x1)) = 0   
POL(n__adx(x1)) = 0   
POL(n__zeros) = 0   
POL(activate(x1)) = 0   
POL(0) = 0   
POL(cons(x1, x2)) = (4)x_2   
POL(adx(x1)) = 0   
POL(incr(x1)) = 0   
POL(zeros) = 0   
POL(s(x1)) = 0   
POL(nil) = 0   
POL(INCR(x1)) = (2)x_1   
POL(ACTIVATE(x1)) = (4)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.